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Abstract

This project delves into the concept of minimal embeddings of finite groups, drawing mo-
tivation from Cayley’s Theorem, which posits that every group of order n can be embedded
into Sn, the symmetric group on n symbols. We begin by providing a complete classification
of groups with orders up to 15. For each such group G, we identify the smallest m such that
Sm contains a subgroup isomorphic to G. Notably, we uncover instances where the value of m
is given by the sum of the prime powers present in the prime factorization of |G|. It should be
emphasized that in general, for an arbitrary finite group, this is very much an open problem.
Our investigation is inspired by a paper of Heffernan, MacHale and McCann.

1 Introduction

Classically, a group G can be thought as a collection of permutations: Every element in the group
G, can be associated with a permutation of a set. This approach allows us to relate abstract alge-
braic structures to tangible geometrical objects or combinatorial properties. This is essentially the
statement of Cayley’s Theorem, a fundamental result in group theory. It asserts that if |G| = n,
then G is isomorphic to a subgroup of the Symmetric Group Sn.

Heffernan, MacHale and McCann considered in [1] some refinements to Cayley’s Theorem, with
a particular emphasis on minimal group embeddings. The family of groups considered in the afore-
mentioned paper restricts to those of order 15 or less. The purpose of this project is to explore some
of the questions raised there. Our first result gives a classification of such groups.

Theorem 1. The following table is the complete list of all finite groups of order 15 or less.

n Groups of order n n Groups of order n

1 Z1 9 Z9,Z3 × Z3

2 Z2 10 Z10, D5

3 Z3 11 Z11

4 Z4,Z2 × Z2 12 Z12,Z2 × Z2 × Z3, D6, Q3, A4

5 Z5 13 Z13

6 Z6, D3 14 Z14, D7

7 Z7 15 Z15

8 Z8,Z2 × Z4,Z2 × Z2 × Z2, D4, Q2

Notation: Cyclic groups are represented by Zn, where n represents the order of the group. The
dihedral group of order 2n is denoted by Dn and Qn is the di-cyclic group of order 4n. Specifically
Q2 is the Quaternion group and A4 is the alternating group of S4.

Once our finite group classification is complete, a natural question that arises is to determine the
minimum Symmetric group that contains a given group. More precisely for all G from Theorem 1,
find the smallest n, such that G can be embedded in Sn.

Theorem 2. The following table lists each group of order 15 or less with its smallest Symmetric
group in which it can be embedded in.
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Group Smallest Symmetric Group Group Smallest Symmetric Group

Z1 ⟨e⟩ ≤ S1 Z15 ⟨(12345)(678)⟩ ≤ S8

Z2 ⟨(12)⟩ ≤ S2 Z2 × Z2 ⟨(12), (34)⟩ ≤ S4

Z3 ⟨(123)⟩ ≤ S3 Z2 × Z2 × Z2 ⟨(12), (34), (56)⟩ ≤ S6

Z4 ⟨(1234)⟩ ≤ S4 Z2 × Z4 ⟨(12), (3456)⟩ ≤ S6

Z5 ⟨(12345)⟩ ≤ S5 Z3 × Z3 ⟨(123), (456)⟩ ≤ S6

Z6 ⟨(123)(45)⟩ ≤ S5 Z2 × Z2 × Z3 ⟨(12), (34), (567)⟩ ≤ S7

Z7 ⟨(123 . . . 67)⟩ ≤ S7 D3 ⟨(123), (12)⟩ ≤ S3

Z8 ⟨(123 . . . 78)⟩ ≤ S8 D4 ⟨(1234), (12)(34)⟩ ≤ S4

Z9 ⟨(123 . . . 89)⟩ ≤ S9 D5 ⟨(12345), (14)(32)⟩ ≤ S5

Z10 ⟨(12345)(67)⟩ ≤ S7 D6 ⟨(123), (12), (45)⟩ ≤ S5

Z11 ⟨(123 . . . 10 11)⟩ ≤ S11 D7 ⟨(1234567), (27)(36)(45)⟩ ≤ S7

Z12 ⟨(1234)(567)⟩ ≤ S7 A4 ⟨(123), (12)(34)⟩ ≤ S4

Z13 ⟨(123 . . . 12 13)⟩ ≤ S13 Q2 ⟨(1234)(5678), (1638)(2547)⟩ ≤ S8

Z14 ⟨(1234567)(89)⟩ ≤ S9 Q3 ⟨(123), (12)(4567)⟩ ≤ S7

This seemly mundane question of minimal group embeddings has led us to interesting results.
The most intriguing one is that Q2, the quaternion group has as its minimal embedding S8, where
as the larger di-cyclic group of 12 elements, Q3, has as its minimal embedding S7.

We have not ventured beyond groups of order 15 given the extended complexity to classify all
groups of order 16 which contain 14 non-isomorphic groups. Furthermore, the number of groups of
order 2k grow with increasing magnitude as stated in [1], which is shown below:

n Number of groups n Number of groups

16 14 256 56,092
32 51 512 10,494,213
64 267 1,024 49,487,365,422
128 2,328

The classification of finite groups of order n, was stated by Cayley as the “general problem”
in Group Theory. His thoughts led him to classify all groups of order 12 or less in 1889 [1]. An
effort that has led to the “Jordan-Hölder Program” which sought to classify all finite simple groups
which form the “building blocks” for any finite group. Moreover, Cayley’s initial ideas have grown
to inspire modern programming languages in computational discrete algebra specifically for com-
putational group theory know as “Groups, Algorithms, Programming” (GAP), as well as modern
repository known as the Small Groups Library in GAP.

Even with the enormous computational power we have in our present day and powerful computer
algebra systems, finding groups of a given order n is still out of reach. Even when n is relatively
small if it has many non coprime factors the problem remains difficult.

2 Background

We prove two basic facts in Group Theory. The first is a general method to compute the size of the
set HK, where H and K are subgroups of a finite group. In the second part we prove that a group
is isomorphic to the direct product of two of its subgroups given certain constraints. These facts
together with the Sylow Theorems and the Fundamental Theorem of Finite Groups will aid us in
proving Theorem 1.
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Proposition 1. If H and K are subgroups of a finite group G, then

|HK| = |H| · |K|
|H ∩K|

Proof. Recall that the set HK = { hk | h ∈ H, k ∈ K } is usually not a subgroup of G.
Define an action of the group H ×K on the set HK as follows:

(h, k) · y = hyk−1

for all (h, k) ∈ H ×K and y ∈ HK.

We now verify that this is certainly a group action.

First, it is clear that
(e, e) · y = eye−1 = y

Moreover,

(h1, k1) · ((h2, k2) · y) = (h1, k1) · (h2yk
−1
2 )

= h1(h2yk
−1
2 )k−1

1

= (h1h2)y(k1k2)
−1

= (h1h2, k1k2) · y

Thus, this is a valid group action.

The group action is in fact transitive. See that the identity element is part of the set HK, since
e = e ·e ∈ HK, then any element hk ∈ HK can be reached by the group action (h, k−1) ·e = hk.
Now by the Orbit-Stabilizer Theorem we obtain the following result:

|HK| = |H ×K|
|Stab(e)|

=
|H| · |K|
|Stab(e)|

It remains to show that |Stab(e)| = |H ∩K|, tothatendconsider:

Stab(e) = {(h, k) ∈ H ×K | (h, k) · e = e}
= {(h, k) ∈ H ×K | hk−1 = e}
= {(h, k) ∈ H ×K | h = k},

This leads us to conclude that:

Stab(e) = {(h, h) ∈ H ×K | h ∈ H ∩K}.

So we obtain that |Stab(e)| = |H ∩K|. Therefore, |HK| = |H|·|K|
|H∩K| .

Proposition 2. Suppose A and B are subgroups of G such that

(i) A ◁ G and B ◁ G;

(ii) AB = G;

(iii) A ∩B = {e}.
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Then G ∼= A×B.

Proof. We first observe that (i), (ii), (iii) imply two more properties:

(iv) If ab = a1b1 with a, a1 ∈ A and b, b1 ∈ B, then a = a1 and b = b1.

(v) If a ∈ A and b ∈ B, then ab = ba.

To prove (iv), note that ab = a1b1 implies a−1
1 a = b1b

−1. Since a−1
1 a ∈ A ∩ B, b1b

−1 ∈ A ∩ B,
and A ∩B = {e}, it follows that a−1

1 a = b1b
−1 = e, so a = a1 and b = b1.

To prove (v), we will show that bab−1a−1 ∈ A ∩B.

Since a ∈ A and A ◁ G :

bab−1a−1 = (bab−1)a−1 ∈ A.

Similarly, since b−1 ∈ B and B ◁ G :

bab−1a−1 = b(ab−1a−1) ∈ B.

This shows that bab−1a−1 ∈ A ∩B = {e}. Hence bab−1a−1 = e, and so ab = ba.

We will use these two properties to prove Proposition 2.

Now define f : A× B → G by f((a, b)) = ab. Then f is onto (surjective) by (ii). Furthermore,
f is injective because if f((a, b)) = f((a1, b1)), then ab = a1b1 so by (iv) a = a1 and b = b1.

Finally, f is an homomorphism since:

f((a1, b1)(a2, b2)) = f((a1a2, b1b2)) = a1a2b1b2

= a1b1a2b2, by (v)

= f((a1, b1))f((a2, b2)).

In conclusion, f is a isomorphism, i.e., G ∼= A×B.

We state, without proof, the following well known theorems is Group Theory which will be utilized
in subsequent proofs.

Theorem 3 (Fundamental Theorem of Finite Abelian Groups).
Let G be a finite abelian group such that |G| = pe11 · pe22 · · · · perr . Then

G ∼=
r∏

i=1

Zp
ei
i

where each pi is a prime number not necessarily distinct and ei is an integer.

Theorem 4 (Sylow I). Given G such that

|G| = n = pr ·m

where pr is the largest power of p, i.e. gcd(pr,m) = 1, then there exists a subgroup H ≤ G such that

|H| = pr
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Definition 1 (Sylow p−subgroup). Let G be a group whose |G| = n = prm where gcd(pr,m) = 1.
Then a subgroup H ≤ G, whose |H| = pr is called a Sylow p−subgroup.

Theorem 5 (Sylow II).
a) Given H ≤ G, if H is a Sylow p-subgroup, then any other Sylow p-subgroup H ′ ≤ G is conjugate
to H, i.e., there exists g ∈ G such that

gHg−1 = H ′.

Remark 3. As a consequence of Theorem 5, if there exist a unique Sylow p−subgroup, call it H,
then it is normal, i.e., for all g ∈ G,

gHg−1 = H.

Theorem 6 (Sylow III). Let G be a group such that |G| = pr · m. Then the number of Sylow
p−subgroups of G divides m and is congruent to 1 modulo p.

3 Proof of Theorem 1, Part I

We give a partial proof of Theorem 1. More precisely, we classify all groups of order 15 or less,
except groups of order 8 and 12. We address these two cases in the following sections.

To begin it is clear that the classification of abelian groups of any given order is a straight
forward task while applying the Fundamental Theorem of Finite Abelian Groups. Our challenge
begins by proving that groups of certain order disallow non-abelian groups, then we can easily apply
the aforementioned theorem to classify all possible groups of that order. The orders which do have
non-abelian groups can then be classified using the properties of normal subgroups or the Sylow
Theorems.

Remark 4. It is well known that all groups of prime order are isomorphic to a cyclic group.

Proposition 5. Groups of order p2, with p-prime, are abelian.

Proof.

Let G be a group of order p2, where p is a prime number and let Z(G) be the center of G. Recall
that the center of G is the set of elements in G that commute with every element of G. It can
be verified that Z(G) is a normal subgroup of G.

By Lagrange’s Theorem the order Z(G) divides the order of G, which implies that |Z(G)| = 1,
p or p2. We will use without proof the well known fact that the center of a prime power ordered
group is non-trivial. This leaves us with two option, either the order of |Z(G)| = p or p2.

If the later case is true then we are done. This owes to the fact that the |Z(G)| = |G|, which
would imply that Z(G) = G and therefore proving that G is abelian.

On the other hand, suppose that |Z(G)| = p, then it’s corresponding quotient group G/Z(G) is
cyclic group of order p. Then by definition:

∃τ ∈ G/Z(G) : G/Z(G) = ⟨τ⟩

Since τ is a coset by Z(G):

∃t ∈ G : τ = tZ(G)
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Thus each coset of Z(G) in G is equal to (tZ(G))i = tiZ(G) for some positive integer i.

Fix a x, y ∈ G, then for some positive integer m,n

x ∈ tmZ(G), y ∈ tnZ(G)

Then x = tmz1, y = tnz2 for some z1, z2 ∈ Z(G).
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Now we can show that x and y do in fact commute. This owes to the fact that the elements in
the center commute with all elements in the group and that the exponents with the same base
commute.

xy = (tmz1)(t
nz2) = tm(z1t

n)z2 = tm(tnz1)z2 = (tmtn)(z1z2) = (tm+n)(z2z1) = (tn+m)(z2z1)

= (tntm)(z2z1) = tn(tmz2)z1 = tn(z2t
m)z1 = (tnz2)(t

mz1) = yx

This applies for all x, y ∈ G, thereby proving that G is abelian. Moreover, this fact contradicts
our assumption that |Z(G)| = p, therefore we have that Z(G) = G.

Proposition 6. Assume |G| = pq where p and q are primes, p < q, and p ∤ (q − 1). Then G is a
cyclic group, i.e., G ∼= Zpq.

Proof.
By Cauchy’s Theorem know that there are elements in G, called them x and y such that |x| = p
and |y| = q. If we consider the order of the element xy, it will be the least common multiple of p
and q, given that they are both prime, then |xy| = pq. Therefore G is a cyclic group isomorphic
to Zpq.

Proposition 7. Let G be a group of order 2p, where p ≥ 3 is an odd prime. Then G is either cyclic
or dihedral.

Proof.

Let G be a group of order 2p, where p is a prime number. Then the order of an element x ∈ G
must divide |G| = 2p. For that reason the order of x can only be 1, 2, p or 2p. We know by
Cauchy’s Theorem that there exist an element, α and β ∈ G, such that the order of α and β is
2 and p respectively.

Now let A = ⟨α⟩ and B = ⟨β⟩.

Furthermore, owing to the fact that the index of B is 2, we have that B ◁ G, hence ∀γ ∈ G
γBγ−1 = B. With this in mind, consider conjugation by α ∈ A on β ∈ B:

αβα−1 ∈ {e, β, β2, . . . , βp−1}

It is clear that αβα−1 ̸= e as otherwise this would lead to the conclusion that β = e, for that
reason we are left with the following options, namely that αβα−1 = βk, where k ∈ {1, 2, . . . , p−1}.

With this in mind, now consider consider conjugation by α on βk.

αβkα−1 = βk2

See that this is the same as double conjugation by α on β.

α2βα−2 = αβkα−1 = βk2

given that the order of α is 2, we can conclude that β = βk2

, which in turn implies that βk2−1 = e.

Now, given that the order of β is p, we require that:

p|k2 − 1
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Henceforth it can be shown that k can only be 1 or p− 1.

In the first case see that if k = 1, we can conclude that αβ = βα. So the order of αβ is the least
common multiple of 2 and p which is 2p. Therefore, there does exist a element in G which has
order 2p, allowing us to conclude that G ∼= Z2p.

In the second case, assume that k = p− 1.

With that in mind, consider the group formed by multiplying A with B, where multiplication
between elements in A and B are define by the relation αβ = βp−1α.

The order of AB is given by the identity in Proposition 2, namely:

|AB| = |A| · |B|
|A ∩B|

.

Owing to the fact that A and B are cyclic groups of different order, they have trivial intersection.
Therefore |AB| = 2p. For that reason we are left to conclude that G ∼= AB, i.e.

G ∼= ⟨α, β | α2 = e, βp = e, αβα−1 = β−1⟩.

Given that this is the exact group definition of a dihedral group, we can conclude that G ∼= Dp.
By this method of exhaustion, we have shown that G is either isomorphic to a cyclic group or a
dihedral group.

Remark 8.

1. Groups of order 6 are isomorphic to Z6 or D3 by Proposition 7.

2. Groups of order 10 are isomorphic to Z10 or D5 by Proposition 7.

3. Groups of order 14 are isomorphic to Z14 or D7 by Proposition 7.

Remark 9.
We classify all abelian groups of order p, p2 or pq, where p and q are prime numbers, using the
Fundamental Theorem of Finite Abelian Groups. Moreover, by Remark 4 and Proposition 5 and
6 we are guaranteed that groups of order p, p2 and pq have no non-abelian groups.

1. Groups of order 2 are Z2.

2. Groups of order 3 are Z3.

3. Groups of order 4 are Z4 and Z2 × Z2.

4. Groups of order 5 are Z5.

5. Groups of order 7 are Z7.

6. Groups of order 9 are Z9 and Z3 × Z3.

7. Groups of order 11 are Z11.

8. Groups of order 13 are Z13.

9. Groups of order 15 are Z15
∼= Z3 × Z5.
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4 Proof of Theorem 1, Part II

We continue the proof of Theorem 1 by proving the groups of order 8.

Proposition 10. There are five non-isomorphic groups of order 8. The abelians ones are Z8, Z2 ×
Z4, Z2×Z2×Z2. The non-abelian groups are the Dihedral group D4 and the Quaternion group Q2.

Proof.
If G is an abelian group of order 8, the fundamental theorem of Finite Abelian Groups (Theorem
3) implies that G isomorphic to either Z8, Z2 × Z4 or Z2 × Z2 × Z2. Therefore we may assume
for the rest of the proof that G is a non-abelian group of order 8.

First, we claim that G has an element of order 4. Indeed, the order of every element in G
divides 8, so it either 1, 2, 4, 8. Given that G is a non-abelian group, it contains no elements of
order 8. Moreover if every non-identity element had order 2, then for every a, b ∈ G we’d have
ab = (ab)−1 = b−1a−1 = ba, so G would be abelian. It follows that there exists a non-identity
element of order different from 2, and the only such possible is 4.

Let x be an element of order 4 in G, and H be the cyclic group generated by x. Since H has
index 2 in G, then it’s a normal subgroup of G.

Let y ∈ G \H. Considering that H is normal, we have

yHy−1 = H

and, in particular, yxy−1 ∈ H.

We now distinguish the following four cases.

(1) Assume yxy−1 = e. This forces yx = y, and so x = e, which is a contradiction. Hence yxy−1 ̸= e.

(2) Assume yxy−1 = x. Then yx = xy.

This implies that any power of x and y commute, i.e. xmyn = ynxm.

Recall that the index of H is 2, so the group G can be expressed as the following union G =
H∪yH. Then every element in G can be express in the form ynxm for some n ∈ Z2 and m ∈ Z4.

Let a, b ∈ G, then a = yn1xm1 and b = yn2xm2 . Then multiplication of ab results in:

ab = yn1xm1yn2xm2 = yn1(yn2xm1)xm2 = (yn2yn1)(xm2xm1) = (yn2xm2)(yn1xm1) = ba

So we see that our assumption leads us to conclude that G is an abelian group which is a
contradiction. Therefore yxy−1 ̸= x.

(3) Assume yxy−1 = x2. Given that the order of an element does not change under conjugation we
get that the order of yxy−1is equal to the order of x, i.e., |yxy−1| = |x| = 4. However |x2| = 2,
which proves that yxy−1 ̸= x2.

(4) Assume yxy−1 = x3 = x−1.

Then conjugation by y on x, results in

yxy−1 = x−1.
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(a) Consider the case where |y| = 2. We wish to show that G is isomorphic to D4, where:

D4 = ⟨r, s | r4 = f2 = e, fr = r−1f⟩.

We are going to define the mapping ϕ : G → D4 as follows:

ϕ(e) = e, ϕ(x) = r, ϕ(x2) = r2, ϕ(x3) = r3

ϕ(y) = f, ϕ(yx) = fr, ϕ(yx2) = fr2, ϕ(yx3) = fr3

Given that G and D4 have the same order, ϕ is a bijection. As well, given any elements in
G, say a = yn1xm1 and b = yn2xm2 , it is clear that:

ϕ(ab) = ϕ(yn1xm1yn2xm2)

= ϕ(yn1yn2x−m1xm2)

= ϕ(yn1+n2x−m1+m2)

= fn1+n2r−m1+m2

= fn1fn2r−m1rm2

= fn1rm1fn2rm2

= ϕ(yn1xm1)ϕ(yn2xm2)

= ϕ(a)ϕ(b)

This shows that ϕ is isomorphism. Therefore G ∼= D4.

(b) Consider the case where |y| = 4.

We recall that the Quaternion group, denoted byQ2, consist of the elements {±1,±i,±j,±k}
subject to the relation i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j, see
that in particular the Quaternion group can be expressed more abstractly as:

Q2 = ⟨i, j | i4 = 1, i2 = j2 = −1, jij−1 = i−1⟩

Given the relation i2 = j2, we wish to prove that y2 = x2. To this end consider that
G = H ∪ yH, then y2 ∈ H ∪ yH. Since yH ̸= H, then y2H ̸= yH, so our only option is
for y2H = H, which implies that y2 ∈ H. See that the order of y2 is two, then our only
option is for y2 = x2. Now define the mapping γ : G → Q2 as follows:

γ(e) = 1, γ(x) = i, γ(x2) = −1, γ(x3) = −i

γ(y) = j, γ(y x) = j i = −k, γ(y x2) = j i2 = −j, γ(y x3) = j i3 = k

Similarly as before given that G and Q2 have the same order, and it is clear γ is a bijection.
Moreover, in the same manner as discussed above for all a and b in G we can show that
γ(ab) = γ(a)γ(b). We have that γ is an isomorphism, therefore G ∼= Q2.

In conclusion, the only non abelian groups of order 8 are D4 and Q2
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5 Proof of Theorem 1, Part III

In this section we wish to demonstrate that there are only 5 possible group structures of order 12,
namely the abelian groups Z4 × Z3 and Z2 × Z2 × Z3 and non-abelian groups D6, A4, Q3.

Lemma 11. Any Group of order 12 has at least one normal subgroup.

Proof.

Let G be a group of order 12. The third Sylow theorem indicates that the possible number of
Sylow 3-subgroups is 1 and 4 and the possible number of Sylow 2-subgroups is 1 and 3. In such a
case where we have a unique Sylow p-subgroup be it 2 or 3, then it is guaranteed to be a normal
subgroup.

Moreover, if we assume that there can exist 3 Sylow 2-subgroups and 4 Sylow 3-subgroup,
then the size of the group must have 18 elements given difference in group structure, all these
subgroups would only intersect at the identity element. Hence there must at least exist one
unique Sylow p-subgroup which will a normal subgroup to G.

Note that this fact can also be seen when taking into account Figure 1 and Figure 2.

H1

H2

H3

k1 k2

e

Figure 1: Consider the group of order 12 with n2 = 3, which are the groups H1, H2, H3 of order
4. We are left with two elements which means that we can only build a unique Sylow 3-subgroup
comprising the element {e, k1, k2}.

Theorem 7. There are two abelian groups of order 12 namely Z4 × Z3 and Z2 × Z2 × Z3.

Proof.

Let G be a group of order 12, such that n3 = 1 and n2 = 1, where np represent the number
of Sylow p-subgroups. Then we have a unique Sylow 3-subgroup call it K and a unique Sylow
2-subgroup label it as H. Then K and H are normal subgroups of G.

Since the group structures of K and H are different it can only be the case that H ∩K = {e}.
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K1

K2
K3

K4

h1

h2

h3

e

Figure 2: Consider the Group of order 12 with n3 = 4, which are the the groups K1,K2,K3,K4,
then we are left with the elements h1, h2, h3 from which we can only build a unique Sylow-2 group
comprising the element {e, h1, h2, h3}

Moreover, consider the group HK and pick two element in this group, h1k1 and h2k2, then if
h1k1 = h2k2, we get that h

−1
2 h1 = k2k

−1
1 , since H∩K = {e}. We have that h1 = h2 and k1 = k2.

So, every hk ∈ HK is distinct so the order of HK is 12. Owing to the fact that |G| = 12, we
have that G = HK. Hence, we can conclude by Proposition 2 that G ∼= H×K, i.e., G ∼= Z4×Z3

or G ∼= Z2 × Z2 × Z3.

Theorem 8. If G is a non abelian group of order 12 and has a unique Sylow 2-subgroup, then G is
isomorphic to A4.

Proof.

Let H be the unique Sylow 2-subgroup of G. Since H has order 4 then H ∼= Z4 or H ∼= Z2 ×Z2.
As discussed above H is a normal subgroup of G.

Moreover, owing to the fact that G is non abelian and has a unique Sylow 2-subgroup by the
Sylow Theorems this would imply that there exist 3 Sylow 3-subgroups. Owing to the fact that
G is a non-abelian group, there can not exists another Sylow 3-subgroup otherwise it would force
G to be abelian.

With that in mind, let x ∈ G \H, then x is a generator of a Sylow 3-subgroup which we denote
as K. Consider the group HK, by (Theorem 1) the order of this group is:

|HK| = |H||K|
|H ∩K|

=
4 · 3
1

= 12

Therefore G ∼= HK. So we are left to show exactly to what group is H isomorphic to. To
this end, recall that H is a unique Sylow 2-subgroup, so H ◁ G. Thus, conjugation by x on the
subgroup H gives us:

xHx−1 = H
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This implies that for some y, y1 ∈ H we have that xyx−1 = y1.

First assume that H ∼= Z4, therefore H is generated by some element called it y. We have that
H = ⟨y⟩ = {e, y, y2, y3}. We’ll show that this leads to a contradiction

(1) Assume that y1 = e, then:
xyx−1 = e

y = x−1x = e

which is a contradiction, since y is the generator of the subgroup H.

(2) Assume that y1 = y, then:

xyx−1 = y

xy = yx

This result contradicts our assumption that G is non-abelian. To see this consider any two
elements say h1k1 and h2k2 in HK.

It is clear that for some n1, n2 ∈ {0, 1, 2, 3} and m1,m2 ∈ {0, 1, 2} we can express:

h1k1 = yn1xm1

h2k2 = yn2xm2

Then we have:

h1k1h2k2 = yn1xm1yn2xm2

= yn1(yn2xm1)xm2

= (yn2yn1)(xm2xm1)

= (yn2xm2)(yn1xm1)

= h2k2h1k1

(3) Assume that y1 = y2, then:

xyx−1 = y2

This equality is a contradiction. The order of the element xyx−1 is 4 nonetheless the order of
y2 is only 2. So this relation can not hold true.

(4) Assume that y1 = y3.

xyx−1 = y3

xy = y3x

Now we check if this relation generates any contradictions, first consider (xy)2.
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(xy)2 = (xy)(xy) = (y3x)(xy) = y3x2y

and
(xy)2 = (xy)(xy) = (xy)(y3x) = x2

Lastly we check (xy)3:
(xy)3 = (xy)(xy)2 = (xy)(y3x2y) = y

However it is also the case that:

(xy)3 = (xy)(xy)2 = (xy)(x2) = (y3x)(x2) = y3

Therefore from our initial assumption xy = y3x, we can conclude that y = y3, which is a
contradiction.

Given that we have exhausted all possible elements for which y1 can be, our assumption that
H ∼= Z4 is not true.

By exclusion H ∼= Z2 ×Z2, then H = {e, a, b, ab}, where a2 = b2 = (ab)2 = e. We are left to find
what conjugation by x is valid:

(1) Assume that conjugation by x fixes all element in H. Then

xax−1 = a

xbx−1 = b

x(ab)x−1 = ab

We have that
xa = ax, xb = bx, x(ab) = (ab)x

Note that the following is also true

x2a = ax2, x2b = bx2, x2(ab) = (ab)x2

Therefore every element of the group H commutes with every element in the group K.

Moreover if we consider the elements h1k1, h2, k2 ∈ HK = G then h1, h2 ∈ {e, a, b, ab} and
k1, k2 ∈ {e, x, x2}.

Owing to the fact that every element in H commutes with ever element in K:

(h1k1)(h2k2) = h1(h2k1)k2 = (h2h1)(k2k1) = h2(k2h1)k1 = (h2k2)(h1k1)

This implies that the group G is abelian which is a contradiction, since we assumed that G is
non abelian. Therefore our assumption that composition by x fixes every element is erroneous.
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(2) Assume that composition by x fixes only one element in H. With out lost of generality assume
that:

xax−1 = b, xbx−1 = a, x(ab)x−1 = ab

Consider double conjugation by on the element b, this gives us:

x2bx−2 = x(xbx−1)x−1 = xax−1 = b

Given that x2 = x−1 and x−2 = x we can write:

x2bx−2 = x−1bx = b

which in turn gives us:
xbx−1 = b

This is however a contradiction since we assumed that xbx−1 = a. The same reasoning follows
if we decide to fix different element in H other than ab.

Therefore our assumption that composition by x fixes one element is false.

(3) Last we are left to consider that composition by x permutes every element a, b, ab in H.

xax−1 = b, xbx−1 = ab (1)

To this end consider the Alternating Group of four elements.

A4 = {e, (12)(34), (13)(24), (14)(23), (123), (132), (134), (143), (124), (142), (234), (243)}

We define a mapping f : G → A4 as follows:

f(a) = (1 2)(3 4)

f(b) = (1 4)(2 3)

f(x) = (1 2 3)

We claim that this is a isomorphism from G to A4.

The following elements {e, (12)(34), (13)(24), (14)(23)} from A4 form the klein-four group, the
which is easily seen from the table below. This subgroup we will denote as H̄.

e (12)(34) (13)(24) (14)(23)

e e (12)(34) (13)(24) (14)(23)
(12)(34) (12)(34) e (14)(23) (13)(24)
(13)(24) (13)(24) (14)(23) e (12)(34)
(14)(23) (14)(23) (13)(24) (12)(34) e

Similarly the multiplication table of the subgroup H of G is:

e a b ab

e e a b ab
a a e ab b
b b ab e a
ab ab b a e
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It is clear that f defines a isomorphism between the group H̄ and H.

Moreover, if we let K̄ = ⟨(123)⟩, then clearly by it’s multiplication table below, it constitutes a
subgroup of A4.

e (123) (132)

e e (123) (132)
(123) (123) (132) e
(132) (132) e (123)

If we compare this multiplication table of K:

e x x2

e e x x2

x x x2 e
x2 x2 e x

It is clear that f is an isomorphism between K̄ and K.

Now, if we consider the group H̄K̄, owing to the fact that each element in H̄ has order 2 and
K̄ has order 3, except for the identity, their intersection can only be the identity. Therefore the
size this group is

|H̄K̄| = |H̄| |K̄|
|H̄ ∩ K̄|

=
4 · 3
1

= 12

This directly implies that H̄K̄ = A4.

Since it is the case that H ∼= H̄ and K ∼= K̄, to be able to state that the function f is an
isomorphism between HK and H̄K̄ we need our function to have the following conditions:

f(x)f(a)f(x−1) = f(b), f(x)f(b)f(x−2) = f(ab)

By simple calculation we get

f(x)f(a)f(x−1) = (123)(12)(34)(132) = (14)(23) = f(b)

f(x)f(b)f(x−1) = (123)(14)(23)(132) = (13)(24) = (12)(34)(14)(23) = f(ab)

Therefore if we consider the multiplication table for HK and H̄K̄, the function f is an isomor-
phism.

Therefore, If G is a non abelian group of order 12 and has a unique Sylow 2-subgroup. Then G
is isomorphic to A4.

Theorem 9. If G is a non-abelian group of order 12 and has a unique Sylow 3-subgroup. Then G
is isomorphic to either D6 or Q3.

Proof.

Let K be the unique Sylow 3-subgroup of G. Then K = ⟨x⟩ and is normal subgroup of G. As
stated before if there is a unique Sylow 3-subgroup then there exists 3 Sylow 2-subgroups of G,
as shown in Figure 1.
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By the Second Sylow Theorem, Theorem 5, we know that all Sylow 2-subgroups are conjugate
to each other. Therefore, all 3 subgroups must have the same group structure. Given that these
Sylow 2-subgroups contain only four elements, these 3 Sylow 2-subgroups are either isomorphic
to Z4 or Z2 × Z2.

Case I. Consider the case where all Sylow 2-subgroups are isomorphic to Z4. Let H be a Sylow
2-subgroup, then it is generated by some element call it y ∈ G.

Now if we consider the group KH, given that H and K have different group structure then these
two groups only intersect at the identity. So the order of the group HK is:

|KH| = |K| |H|
|K ∩H|

=
3 · 4
1

= 12.

Thus G = KH. Lastly we are left to understand the underlying group operation between
elements of H and K. To such an end, note that K is a normal group of G, hence conjugation
y ∈ H does not alter the group, i.e.,

yKy−1 = K

So, yxy−1 ∈ K where K = ⟨x⟩. We are left to check to what element in K does yxy−1 yield a
valid relationship.

To such an end:

1. Consider the case were yxy−1 = e. Then x = y−1y = e, which is a contradiction. Therefore
an invalid relation.

2. Consider the case were yxy−1 = x. Then xy = yx, or more generally for any power xnym =
ymxn. Then given any two element in KH of the form yn1xm1 and yn2xm2 where n1, n2 ∈ Z4

and m1,m2 ∈ Z3. Then we can show that these two elements commute as show below:

yn1xm1yn2xm2 = yn1(yn2xm1)xm2 = (yn2yn1)(xm2xm1) = yn2xm2yn1xm1 .

Therefore, this relation would imply that G is in fact abelian. This however contradicts our
initial assumption that G is non-abelian.

3. Consider the case were yxy−1 = x2.

To this end note the Dicylic group of order 12, Q3:

Q3 = {a, b | a6 = 1, a3 = b2, bab−1a = e}

and the elements in the group KH:

KH = {e, x, x2, y, y2, y3, xy, xy2, xy3, x2y, x2y2, x2y3}

Given the relation yxy−1 = x2 of which can be also written as yx = x2y, we wish show that
Q3 is isomorphic to KH. First we can calculate the order of elements in KH, for example the
element xy2.

To start consider (xy2)2:

(xy2)(xy2) = (xy)(yx)(y2) = (xy)(x2y)(y2) = x(yx)(xy3)

= x(x2y)(xy3) = x3(yx)(y3) = x3(x2y)y3 = x2
(2)
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Given that the order of x2 is 3, we can conclude that then the order xy2 is 6.

Moreover, it’s clear that the order of y2 is 2. As well y2 is the same as (xy2)3, as shown below:

(xy2)3 = (xy2)2(xy2) = x2(xy2) = y2

Now define the function f to be the mapping from KH to Q3 as:

f(xy2) = a

f(y) = b

It’s clear that every element from KH is mapped to Q3, and given that

bab−1a = e

and
(y)(xy2)(y−1)(xy2) = yxyxy2 = yx(yx)y2 = yx(x2y)y2 = e

we know that the group operation in KH is the same as the group operation in Q3. Given that
f maps generators and preserves the group structure, we can conclude that KH is isomorphic
to Q3. More explicitly, we can stated that G ∼= Q3 when G has a unique Sylow 3-subgroup
and every Sylow 2-subgroups are cyclic.

Case II. For the last case we wish to show that if all Sylow 2-subgroups are isomorphic to
Z2 × Z2 then G will be isomorphic to D6. Let H be a Sylow 2-subgroup, then every element
except for the identity has order 2. We write:

H = {e, a, b, ab}

Note that G = KH, given that |KH| = 12. Given that K is a normal subgroup of G, consider
conjugation by some element in H. As follows we have that:

axa−1 = xu

bxb−1 = xv

(ab)x(ab)−1 = xu·v

such that u, v ∈ {0, 1,−1}.

At first it is clear that if u or v or both are equal to 0. Then we are lead to conclude that
x = e, which is a contradiction as x is the generator for K.

Moreover, if we consider the case where u, v equal 1. Then we are lead to conclude that every
element commutes:

ax = xa

bx = xb

abx = xab

which as shown before this leads us to conclude that our group is abelian, which we assumed
it was not. Hence u and v can not equal 1 given that it leads to a contradiction.
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Lastly, we can choose u, v to be either 1 and -1 or -1 and 1 respectively. Note that both choices
are equivalent to letting u, v be equal to -1 and -1. So with out lost of generality we will choose
u to equal to 1 and v to equal -1. This result in:

axa = x

bxb = x−1

(ab)x(ab) = x−1

Now we wish to show that there exist an isomorphism between G and the D6. To this end,
consider the order of the element (ax):

(ax)(ax) = (axa)x = x · x = x2.

Given that the order of x2 is 3, we can conclude that the order of ax is 6.

Moreover note that |b| = 2. Hence if we consider the function f to map from KH to D6:

f((ax)nbm) = rnfm, where n, m are integers.

See that all elements from KH are mapped to D6, therefore the map is a bijection.

Finally, if we consider group structure of the dihedral group of order 6, then we require the
relationship between r and f to hold:

D6 = ⟨ r, f | r6 = f2 = e, rf = r−1f ⟩

To this end consider that:

(ax2)b = a(x−1b) = a(bx) = b(ax)

Hence:
f((ax2)b) = f(ax2) · f(b) = r · f = f · r−1 = f(b) · f(ax) = f(bax)

Since (ax)−1 = (ax2), it is evident that the group operation KH is the same as the group
operation in D6. Furthermore we can show that f is a homomorphism which allowing us to
conclude that f is an isomorphism. Therefore, G ∼= D6.

This concludes our classification of all groups up to order 15.

6 Proof of Theorem 2, Part I

In the previous section we sought to classify all groups of order 15 or less. For some of these groups
we find the Symmetric Group of least order in which it can be embedded; we shall refer to this as
the minimal embedding.
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6.1 Cyclic Groups

Lemma 12. Let p be a prime number and r ≥ 1 an integer. The minimal embedding of a cyclic
group G ∼= Zpr is Spr .

Proof.

In any symmetric group Sn, the order of an element π ∈ Sn is given by the least common multiple
of the length of the cycles in its cycle decomposition. In other words, if we decompose π into
disjoint cycles:

π = σ1 · σ2 · σ3 · σ4 · · ·σk

then the order ord(π) in Sn is the lcm(l1, l2, . . . , lk), where li is the length of σi for 1 ≤ i ≤ k.

Moreover, given that all possible cycle types of Sn are given by partitions of n. It is clear that

l1 + l2 + l3 + · · ·+ lk ≤ n (3)

Now suppose that one could embed G ∼= Zpr into a symmetric group Sn with n < pr. Then Sn

would necessarily contain an element, π, of order pr. By the above discussion:

pr = lcm(l1, l2, . . . , lk)

for some positive integer l1, l2, . . . , lk.

In particular, each li must divide pr. Given that p is a prime, each li is restricted to be a power
of p no greater than pr. So we may re-write the equation above to:

lcm(l1, l2, l3, . . . , lk) = lcm(pγ1 , pγ2 , pγ3 , . . . , pγr ) = pMax{γ1,γ2,...,γk} = pr

where γi is some integer less than or equal to r for 1 ≤ i ≤ k.

Hence, there exists some index i such that γi = r for 1 ≤ i ≤ k. Therefore, the cycle length, li,
for that same index i, would be pr.

However, as we noted in Equation 3 we have that:

l1 + l2 + · · ·+ lr ≤ n < pr

which contradicts our previous argument that there exists some cycle whose length is pr. It
follows that if G ∼= Zpr is embedded in some Sn then n ≥ pr.

Finally, we note that such an embedding is possible for n = pr.

Consider, the permutation (1 2 3 . . . pr) of pr elements generates a cyclic subgroup of Spr

whose order is pr. Given that two cyclic groups of the same order are isomorphic, then G ∼=
⟨(1 2 3 . . . pr)⟩ ≤ Spr . So we conclude that Spr is the minimal embedding of G.

As a consequence we obtain the following table:
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Group Minimal Embedding Group Minimal Embedding

Z2 S2 Z8 S8

Z3 S3 Z9 S9

Z4 S4 Z11 S11

Z5 S5 Z13 S13

Z7 S7

Next we wish to prove the minimal group embedding for Z6 and Z10. To achieve this goal we will
use again the idea from the previous lemma combined with the fact that possible cycle types of Sn

are given by partitions of n.

Lemma 13.

1. The minimal embedding of Z6 is S5.

2. The minimal embedding of Z10 is S7.

3. The minimal embedding of Z12 is S7.

4. The minimal embedding of Z14 is S9.

5. The minimal embedding of Z15 is S8.

Proof.

To start we wish to prove that S5 is the minimal Symmetric Group in which Z6 can be embedded
in. See that Z6 can be expressed in cyclic notation as Z6

∼= ⟨(123)(45)⟩ ≤ S5.

Furthermore, assume by way of contradiction that Z6 ↪→ S4, then this would imply that there
exist a permutation in S4 in which the least common multiple of the cycle lengths is 6. This
entails that there exists a cycle in the permutation which is a multiple of 3. See that there is
only a multiple of 3 less than 4, namely 3 it’s self. So we will have an permutation with a cycle
type that involves a 3-cycle.

As stated before all possible cycle types of Sn are given by partitions of n. In particular the only
partition of 4 that involves a 3 is 3+1 = 4. However, in this case the least common multiple of
the cycle lengths is just lcm(3, 1) = 3. Hence there can not exist a permutation in S4 of order 6,
so we have reach a contradiction. Therefore the minimal embedding of Z6 is S5.

The exact same proof method applies to Z10 and Z14.

Similarly, we can conclude that the minimal Symmetric Group in which Z12 can be embedded
in is S7. Notice that Z12 can be expressed in cyclic notation as Z12

∼= ⟨(1234)(567)⟩ ≤ S7.

If we assume by way of contradiction that Z12 ↪→ S6, then there exist a permutation in which the
least common multiple of the cycles lengths is 12. This would imply by the same reasoning as
before that there exist a cycle in the permutation which is a multiple of 4. There is only a multi-
ple of 4 less than 6, exactly 4 it’s self. So we are forced to have a cycle type that contains a 4-cycle.

Moreover, there are only two partition of 6 that contains a 4 which are 4+1+1 = 6 and 4+2 = 6.
However, the least common multiple of these cycle lengths is just lcm(4, 1, 1) = lcm(4, 2) = 4.
Hence there can not exist a permutation in S6 which is of order 12, therefore S7 is the minimal
Symmetric Group in which Z12 can be embedded in.

22



The same proof technique applies to Z15.

6.2 Dihedral Groups

Furthermore, consider the minimal group embedding of any dihedral group Dn of order 2n, where
n is some positive integer greater than 2. Given that we are considering groups of order at most 15
we restrict ourself to the following lemma:

Lemma 14.

1. The minimal embedding of D3 is S3.

2. The minimal embedding of D4 is S4.

3. The minimal embedding of D5 is S5.

4. The minimal embedding of D7 is S7.

Proof. It is well known that D3 is isomorphic to S3. Hence S3 is it’s minimal embedding.

On the other hand, see that the group representation of D4 = ⟨r, f | r4 = e, f2 = e, rf = fr−1⟩.
We wish to prove that D4 ↪→ S4 by proving that D4

∼= ⟨(1234), (12)(34)⟩. To start see that
⟨r⟩ ∼= ⟨(1234)⟩ given that both are cyclic groups of the same order, furthermore, if we establish the
mapping γ : D4 → ⟨(1234), (12)(34)⟩ to be:

γ(rm) = (1234)m γ(f) = (12)(34) γ(rf) = (1234)(12)(34)

where m is an integer, we obtain the following relations

γ(r)γ(f) = (1234)(12)(34) = γ(rf)

and
γ(r)γ(f) = (1234)(12)(34) = (12)(34)(1432) = (12)(34)(1234)−1 = γ(f)γ(r−1)

See that every element in D4 is mapped to a unique element in ⟨(1234), (12)(34)⟩. Therefore γ is a
bijective homomorphism. So we can conclude that D4 ↪→ S4 given that

D4
∼= ⟨(1234), (12)(34)⟩ ≤ S4.

Lastly, D4 ̸↪→ S3 given that the order of |D4| = 8 does not divide the order of |S3| = 6. Thus, S4 is
the minimal embedding of D4. The same reasoning can be applied to prove the minimal embedding
of D5 and D7 with the exception that γ(f) = (25)(34) and γ(f) = (27)(36)(45) respectively. It
should be noted that if p is prime and n < p then Sn has no elements of order p.

Lemma 15. The minimal embedding of D6 is S5.

Proof.

Consider the group representation of D6 = ⟨r, f | r6 = e, f2 = e, rf = fr−1⟩. Notice that
⟨r⟩ ∼= ⟨(123)(45)⟩ given that both are cyclic groups which share the same order. Now consider
the mapping γ : D6 → ⟨(123)(45), (12)⟩ to be:

γ(rm) = (123)m(45)m γ(f) = (12) γ(rf) = (123)(45)(12) = (13)(45)

where m is any integer. We have the following relations:

γ(r)γ(f) = (123)(45)(12) = (13)(45) = γ(rf)

and
γ(r)γ(f) = (123)(45)(12) = (13)(45) = (12)(132)(45) = γ(f)γ(r−1)

23



Given that every element in D6 is mapped to a unique element in ⟨(123)(45), (12)⟩. We can
conclude that γ is a bijective homomorphism. So we can conclude that D6 ↪→ S5 given that

D6
∼= ⟨(123), (12), (45)⟩ ≤ S5

Lastly see, that D6 can not be embedded in S4. This owes to the fact that D6 has a cyclic
subgroup of order 6, where as S4 has no elements of order 6.

6.3 Non Cyclic Abelian Groups

Next consider the following non-cycic abelian groups

Z2 × Z2, Z2 × Z4, Z2 × Z2 × Z2, Z3 × Z3,Z2 × Z2 × Z3

Lemma 16.

1. The minimal embedding of Z2 × Z2 is S4.

2. The minimal embedding of Z2 × Z4 is S6.

3. The minimal embedding of Z3 × Z3 is S6.

Proof. To begin consider the group Z2×Z2. See that Z2×Z2 can not be embedded in S3 given that
the order of Z2 × Z2 does not divide the order of S3. So it’s minimal embedding is S4 by Cayley’s
theorem.

Now consider the following abelian groups, Z2 × Z2 × Z2 and Z2 × Z4. We wish to show that
their minimal embedding is S6. First, see that both groups can be embedded in S6, owing to the
fact that they are isomorphic to the cyclic representations shown below:

Z2 × Z2 × Z2
∼= ⟨(1 2) , (3 4) , (5 6)⟩ ≤ S6 and Z2 × Z4

∼= ⟨(1 2) , (3 4 5 6)⟩ ≤ S6

Nonetheless, see that these two groups can not be embedded in S4 nor in S5, owing to the fact
that if such an embedding were possible they both would be Sylow 2-subgroups conjugate to D4,
by the Sylow Theorems. This owes to the fact that D4 being of order 8 is a Sylow 2-subgroup of S4

and S5. Therefore we obtain a contradiction because D4 is a non-abelian group. Therefore, S6 is
the minimal embedding for Z2 × Z2 × Z2 and Z2 × Z4.

Continuing with minimal embeddings, consider the group Z3 × Z3, which has as it’s minimum
embedding S6. This owes to fact Z3 × Z3 is isomorphic to the cyclic representation:

Z3 × Z3
∼= ⟨(1 2 3) , (4 5 6)⟩ ≤ S6

and that the order of Z3 ×Z3 being 9, does not divide the order of S4 or S5 which is 24 and 120
respectively.

Remark 17. By similar methods used in Lemma 16 it can be proven that Z2 × Z2 × Z3 has as it’s
minimal embedding S7 as stated in [1].
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7 The Alternating Group and Dicyclic groups

Finally we consider the Alternating group and the Di-cyclic groups.

Lemma 18. The minimal embedding of A4 is S4.

Proof. See that A4 ≤ S4 and |A4| ̸ | |S3|. Therefore A4 has as it minimal embedding S4.

Now we wish to prove that the minimal embedding of Q2 is S8. To this end consider the group G
acting on a set S. Then

g ∈ G, x ∈ S : g · x ∈ S

For a fixed g ∈ G, define

λ · g : S → S

x 7→ g · x

Then λ · g is a permutation of S.

Now define a map:

F : G → Perm(S)

g → λ · g

It’s known that F is a group homomorphism.

Moreover Ker(F ) = {g ∈ G : gx = x, ∀x ∈ S} =
⋂

x∈S Stab(x).

Now consider the following Lemma.

Lemma 19. The Quaternion Group Q2 does not embed in Sn with n < 8.

Proof.

Suppose otherwise, then there exists an injective group homomorphism F : Q2 → Perm(S),
with |S| < 8. Injective means trivial kernel, so

⋂
x∈S Stab(x) = {e}.

Now, by the Orbit-Stabilizer theorem:

|Orbit(x)| = [Q2 : Stab(x)]

Thus

|Q2|
|Stab(x)|

= |Orbit(x)| ≤ |s| < 8 = |Q2|,

which contradicts that |Stab(x)| > 1, i.e., the Stabilizer subgroup is non-trivial for every x ∈ S.

One specific feature of Q2 is that every non-trivial subgroup contains the subgroup {±1}. In
other words, the intersection of the stabilizer contains at least 2 elements. This contradicts our
assumption that we have a trivial kernel.

Lemma 20. The minimal embedding of Q2 is S8.
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Proof. Lastly we are left to show that Q2 ↪→ S8. Consider the group representation of Q2, which is

Q2 = ⟨i, j|i4 = 1; i2 = j2; j−1ij = i−1⟩

Let γ be the function that maps Q2 to a subgroup of S8 given by:

γ(im) = (1234)m(5678)m, γ(jn) = (1638)n(2547)n

γ(ij) = (1234)(5678)(1638)(2547) = (1735)(2648)

where m and n are any integer. Observe that γ is a bijection, as shown below every element from
Q2 is mapped to a distinct permutation in S8.

γ(i) = (1234)(5678)

γ(i)2 = (1234)2(5678)2 = (13)(24)(57)(68) = γ(−1)

γ(i)3 = (1234)3(5678)3 = (1432)(5876) = γ(−i)

γ(i)4 = (1234)4(5678)4 = e = γ(1)

γ(j) = (1638)(2547)

γ(j)2 = (1638)2(2547)2 = (13)(24)(57)(68) = γ(−1)

γ(j)3 = (1638)3(2547)3 = (1836)(2745) = γ(−j)

γ(j)4 = (1638)4(2547)4 = e = γ(1)

γ(ij) = (1735)(2648) = γ(k)

γ(ij)2 = (1735)2(2648)2 = (13)(24)(57)(68) = γ(−1)

γ(ij)3 = (1735)3(2648)3 = (1537)(2846) = γ(−k)

γ(ij)4 = (1735)4(2648)4 = e = γ(1)

Moreover, see that the first two group relations hold, namely, γ(i)4 = e and γ(j)2 = γ(i)2.

We have that γ is homomorphism given that:

γ(ij) = (1234)(5678)(1638)(2547) = γ(i)γ(j)

Lastly we have that:

γ(j)γ(i)−1 = γ(j)γ(i)3 = (1638)(2547)(1432)(5876) = (1735)(2648) = γ(i)γ(j)

So, we obtain:
γ(j)−1γ(i)γ(j) = γ(i)−1

Given that γ is a bijective homomorphism, we can conclude that:

Q2
∼= ⟨(1234)(5678), (1638)(2547)⟩ ≤ S8

Therefore Q2 has as it’s minimal embedding S8.

Lemma 21. The minimal embedding of Q3 is S7.
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Proof. Consider the group representation for Q3:

Q3 = ⟨ x, y | x4 = y3 = e, xyx−1 = y−1 ⟩

We have an element of order 4, and another element of order 3. Now, every element of order 3
in S6 is either a 3-cycle or the product of two distinct 3-cycles. In othe words if τ has order 3 in
S6, then τ is of the form (123) or (123)(456).

Case 1. τ = (123)
A well known fact from Group Theory states that if σ is any element of S6 then:

(σ)(τ)(σ)−1 = (σ(1)σ(2)σ(3))

Given that we want to have the same group structure we require that xyx−1 holds true. Thus,

(σ)(τ)(σ)−1 = τ−1 = (132)

However, this implies that either σ(1) = 1, or σ(2) = 2, or σ(3) = 3. Without lost of generality,
assume that σ(1) = 1. Then σ(2) = 3 and σ(3) = 2, i.e., σ swaps 2 and 3. However, this makes
it impossible for σ to contain a 4-cycle, therefore σ cannot have order 4.

Case 2. τ = (123)(456)

This case follows the same proof pattern as Case 1, the only difference is that: (σ)(τ)(σ)−1 =
(σ(1)σ(2)σ(3))(σ(4)σ(5)σ(6)).

So we can conclude that Q3 can not be embedded in S6.

Finally, by the same methods used to find an isomorphism from Q2 to a subgroup in S8, we can
prove that there exist subgroup in S7 isomorphic to Q3 as stated in [1]. Specifically, it can shown
that:

Q3
∼= ⟨(123), (12)(4567)⟩ ≤ S7.

Therefore, Q3 has as it’s minimal embedding S7.
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