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Abstract

This project delves into the concept of minimal embeddings of finite groups, drawing mo-
tivation from Cayley’s Theorem, which posits that every group of order n can be embedded
into Sy, the symmetric group on n symbols. We begin by providing a complete classification
of groups with orders up to 15. For each such group G, we identify the smallest m such that
Sm contains a subgroup isomorphic to GG. Notably, we uncover instances where the value of m
is given by the sum of the prime powers present in the prime factorization of |G|. It should be
emphasized that in general, for an arbitrary finite group, this is very much an open problem.
Our investigation is inspired by a paper of Heffernan, MacHale and McCann.

1 Introduction

Classically, a group G can be thought as a collection of permutations: Every element in the group
@, can be associated with a permutation of a set. This approach allows us to relate abstract alge-
braic structures to tangible geometrical objects or combinatorial properties. This is essentially the
statement of Cayley’s Theorem, a fundamental result in group theory. It asserts that if |G| = n,
then G is isomorphic to a subgroup of the Symmetric Group S,.

Heffernan, MacHale and McCann considered in [1] some refinements to Cayley’s Theorem, with
a particular emphasis on minimal group embeddings. The family of groups considered in the afore-
mentioned paper restricts to those of order 15 or less. The purpose of this project is to explore some
of the questions raised there. Our first result gives a classification of such groups.

Theorem 1. The following table is the complete list of all finite groups of order 15 or less.

H n Groups of order n H n Groups of order n H
1 Zl 9 Zg,Zg X Zg
2 Zo 10 Zn0, Ds
3 Zs 11 VAR
4 Z4,Z2 XZQ 12 Z127ZQ XZQ XZg,DG,Qg,A4
5 Z5 13 Zlg
6 Zg, D3 14 Z14, D7
7 Z7 15 Z15
8 Zg,Zg XZ4,Z2 XZQ XZQ,D4,Q2

Notation: Cyclic groups are represented by Z,, where n represents the order of the group. The
dihedral group of order 2n is denoted by D,, and @, is the di-cyclic group of order 4n. Specifically
Q- is the Quaternion group and Ay is the alternating group of Sjy.

Once our finite group classification is complete, a natural question that arises is to determine the
minimum Symmetric group that contains a given group. More precisely for all G from Theorem 1,
find the smallest n, such that G can be embedded in S,,.

Theorem 2. The following table lists each group of order 15 or less with its smallest Symmetric
group in which it can be embedded in.



H Group Smallest Symmetric Group H Group Smallest Symmetric Group H

Zl <€> S Sl Zlg, <(12345)(678)> S Sg

Zn [(12)] < S5 T x 23 (12), (34)) < S

Zg <(123)> < Sg ZQ X ZQ X ZQ <(12), (34), (56)> < Sﬁ

Zo (123)(45)) < S; T % T2 % T [(12), (34), (567)) < 57

77 (123...67)) < 57 Ds ((123),(12)) < Ss

Zs (123...78)) < S D, ((1231), (12)(31)) < 5,

Zo ((123...89)) < S, Ds ((12345), (14)(32)) <s5
Zuo ((12345)(67)) < S Dy ((123), (12), (45)) < S

711 ((123...1011)) < 511 D ((1234567), (27)(36)(45)) < Sy
Z1s [(1234)(567)) < S A ((123), (12)(34)) < S

Z1s ((123...1213)) < 513 Q- ((1234)(5678), (1638)(254 )> < Ss
Z14 ((1234567)(89)) < Sg Qs ((123), (12)(4567)) <

This seemly mundane question of minimal group embeddings has led us to interesting results.
The most intriguing one is that ()2, the quaternion group has as its minimal embedding Sg, where
as the larger di-cyclic group of 12 elements, (J3, has as its minimal embedding S7.

We have not ventured beyond groups of order 15 given the extended complexity to classify all
groups of order 16 which contain 14 non-isomorphic groups. Furthermore, the number of groups of
order 2F grow with increasing magnitude as stated in [1], which is shown below:

H n Number of groups H n Number of groups H
16 14 256 56,092
32 51 512 10,494,213
64 267 1,024 49,487,365,422
128 2,328

The classification of finite groups of order n, was stated by Cayley as the “general problem”
in Group Theory. His thoughts led him to classify all groups of order 12 or less in 1889 [1]. An
effort that has led to the “Jordan-Holder Program” which sought to classify all finite simple groups
which form the “building blocks” for any finite group. Moreover, Cayley’s initial ideas have grown
to inspire modern programming languages in computational discrete algebra specifically for com-
putational group theory know as “Groups, Algorithms, Programming” (GAP), as well as modern
repository known as the Small Groups Library in GAP.

Even with the enormous computational power we have in our present day and powerful computer
algebra systems, finding groups of a given order n is still out of reach. Even when n is relatively
small if it has many non coprime factors the problem remains difficult.

2 Background

We prove two basic facts in Group Theory. The first is a general method to compute the size of the
set HK, where H and K are subgroups of a finite group. In the second part we prove that a group
is isomorphic to the direct product of two of its subgroups given certain constraints. These facts
together with the Sylow Theorems and the Fundamental Theorem of Finite Groups will aid us in
proving Theorem 1.



Proposition 1. If H and K are subgroups of a finite group G, then

|H]| - |K]|
HK|=——
HE = A g

Proof. Recall that the set HK = { hk | h € H, k € K } is usually not a subgroup of G.
Define an action of the group H X K on the set HK as follows:

(h,k) -y = hyk™
for all (h,k)€e Hx K andy € HK.
We now verify that this is certainly a group action.

First, it is clear that

(e,e) - y=eye ' =y

Moreover,

(h1, k1) - ((ha, k2) - y) = (ha, k1) - (hayky ')
= hy(hayky ')ki !
= (haho)y(kiks) ™"
= (hlhz, klkz) Y

Thus, this is a valid group action.
The group action is in fact transitive. See that the identity element is part of the set H K, since

e =e-e € HK, then any element hk € HK can be reached by the group action (h,k=!)-e = hk.
Now by the Orbit-Stabilizer Theorem we obtain the following result:

Hx K| _ |H|- |K]
|Stab(e)|  [Stab(e)]|
It remains to show that |Stab(e)| = |H N K|, tothatendconsider:

K| =

Stab(e)

{(h,k) e Hx K | (h,k)-e=¢e}
{(hk) e Hx K | hk™ = ¢}
{(h,k) e Hx K | h =k},

This leads us to conclude that:

Stab(e) = {(h,h) e Hx K | h€ HNK}.

So we obtain that |Stab(e)| = |H N K|. Therefore, |HK| = ‘Iglf.ﬁ‘lif(l" O
Proposition 2. Suppose A and B are subgroups of G such that
(i) A<G and B<G;
(i) AB = G;

(iii) ANB = {e}.



Then G =2 A x B.
Proof. We first observe that (i), (ii), (iii) imply two more properties:
(iv) If ab = a1by with a,a; € A and b,b; € B, then a = a; and b = b;.
(v) If a € A and b € B, then ab = ba.

To prove (iv), note that ab = a;b; implies afla = b1b~!. Since afla €EANB, b € ANB,
and AN B = {e}, it follows that a;'a = b1b~' =, s0 a = a; and b = b;.

To prove (v), we will show that bab~la~! € AN B.
Since a € A and A< G :

bab~ta™! = (bab ')a"! € A.
Similarly, since b~ € B and B <G :
bab~ta~' =blab 'a"') € B.

This shows that bab~ta=! € AN B = {e}. Hence bab~'a~! = e, and so ab = ba.
We will use these two properties to prove Proposition 2.

Now define f : A x B — G by f((a,b)) = ab. Then f is onto (surjective) by (ii). Furthermore,
f is injective because if f((a,b)) = f((a1,b1)), then ab = a1b; so by (iv) a = a; and b = b;.

Finally, f is an homomorphism since:

f((a1,b1)(az,b2)) = f((a1az,bi1b2)) = ajazbibs
= aibiagbs, by (v)

f((ar, 1)) f((az, b2)).

In conclusion, f is a isomorphism, i.e., G =2 A x B.
O

We state, without proof, the following well known theorems is Group Theory which will be utilized
in subsequent proofs.

Theorem 3 (Fundamental Theorem of Finite Abelian Groups).
Let G be a finite abelian group such that |G| = p* - ps? - ---pe. Then

G= f[ Zp:'i
=1

where each p; is a prime number not necessarily distinct and e; is an integer.

Theorem 4 (Sylow I). Given G such that
IGl=n=p"-m
where p" is the largest power of p, i.e. ged(p”,m) =1, then there exists a subgroup H < G such that
|H| = p"



Definition 1 (Sylow p—subgroup). Let G be a group whose |G| = n = p"m where ged(p”, m) = 1.
Then a subgroup H < G, whose |H| = p" is called a Sylow p—subgroup.

Theorem 5 (Sylow II).
a) Given H < G, if H is a Sylow p-subgroup, then any other Sylow p-subgroup H' < G is conjugate
to H, i.e., there exists g € G such that

gHg ' =H'.

Remark 3. As a consequence of Theorem b5, if there exist a unique Sylow p—subgroup, call it H,
then it is normal, i.e., for all g € G,
gHg ' = H.

Theorem 6 (Sylow III). Let G be a group such that |G| = p" - m. Then the number of Sylow
p—subgroups of G divides m and is congruent to 1 modulo p.

3 Proof of Theorem 1, Part I

We give a partial proof of Theorem 1. More precisely, we classify all groups of order 15 or less,
except groups of order 8 and 12. We address these two cases in the following sections.

To begin it is clear that the classification of abelian groups of any given order is a straight
forward task while applying the Fundamental Theorem of Finite Abelian Groups. Our challenge
begins by proving that groups of certain order disallow non-abelian groups, then we can easily apply
the aforementioned theorem to classify all possible groups of that order. The orders which do have
non-abelian groups can then be classified using the properties of normal subgroups or the Sylow
Theorems.

Remark 4. It is well known that all groups of prime order are isomorphic to a cyclic group.
Proposition 5. Groups of order p?, with p-prime, are abelian.

Proof.

Let G be a group of order p?, where p is a prime number and let Z(G) be the center of G. Recall
that the center of G is the set of elements in G that commute with every element of G. It can
be verified that Z (@) is a normal subgroup of G.

By Lagrange’s Theorem the order Z(G) divides the order of G, which implies that |Z(G)| = 1,
p or p2. We will use without proof the well known fact that the center of a prime power ordered
group is non-trivial. This leaves us with two option, either the order of |Z(G)| = p or p.

If the later case is true then we are done. This owes to the fact that the |Z(G)| = |G|, which
would imply that Z(G) = G and therefore proving that G is abelian.

On the other hand, suppose that |Z(G)| = p, then it’s corresponding quotient group G/Z(G) is
cyclic group of order p. Then by definition:

IreG/Z(G) : G/Z(G) = (T)
Since T is a coset by Z(G):

deG : 7=tZ(G)



Thus each coset of Z(G) in G is equal to (tZ(G))" = t*Z(G) for some positive integer i.
Fix a x,y € G, then for some positive integer m,n
x€t™Z(G), yet"Z(Q)

Then & = t™z;,y = t" 2z for some 21, 25 € Z(G).



Now we can show that z and y do in fact commute. This owes to the fact that the elements in
the center commute with all elements in the group and that the exponents with the same base
commute.

wy = (t"2)(t"29) = 1" (21t ) 2e = " (1" 21) 22 = (") (2122) = (T (2221) = (") (2221)
= (t"t")(2221) = t"(t"22)21 =t (22t™) 21 = (t"22)(t"21) = yx

This applies for all z,y € G, thereby proving that G is abelian. Moreover, this fact contradicts
our assumption that |Z(G)| = p, therefore we have that Z(G) = G.
O

Proposition 6. Assume |G| = pqg where p and q are primes, p < q, and pt (¢ —1). Then G is a
cyclic group, i.e., G = Zyq.

Proof.
By Cauchy’s Theorem know that there are elements in G, called them x and y such that |z| = p
and |y| = q. If we consider the order of the element xy, it will be the least common multiple of p
and ¢, given that they are both prime, then |zy| = pq. Therefore G is a cyclic group isomorphic
t0 Zpg.
O

Proposition 7. Let G be a group of order 2p, where p > 3 is an odd prime. Then G is either cyclic
or dihedral.

Proof.

Let G be a group of order 2p, where p is a prime number. Then the order of an element = € G
must divide |G| = 2p. For that reason the order of x can only be 1,2,p or 2p. We know by
Cauchy’s Theorem that there exist an element, a and § € G, such that the order of o and 3 is
2 and p respectively.

Now let A = (a) and B = (8).

Furthermore, owing to the fact that the index of B is 2, we have that B < G, hence Vy € G
vB~~! = B. With this in mind, consider conjugation by o € A on 3 € B:

04604_1 S {eaﬁaﬁ27 s 761)_1}

It is clear that afBa~! # e as otherwise this would lead to the conclusion that 3 = e, for that
reason we are left with the following options, namely that a3a~! = ¥ where k € {1,2,...,p—1}.

With this in mind, now consider consider conjugation by a on g¥.
k. -1 _ ok?
afta =f
See that this is the same as double conjugation by « on .
OtQﬁOé_Q — aﬁka_l _ Bk’z

given that the order of « is 2, we can conclude that 5 = ﬁk27 which in turn implies that ﬁkz_l =e.

Now, given that the order of g is p, we require that:

plk? —1



Henceforth it can be shown that k can only be 1 or p — 1.

In the first case see that if k£ = 1, we can conclude that a8 = fa. So the order of af is the least
common multiple of 2 and p which is 2p. Therefore, there does exist a element in G which has
order 2p, allowing us to conclude that G = Zy,.

In the second case, assume that k =p — 1.

With that in mind, consider the group formed by multiplying A with B, where multiplication
between elements in A and B are define by the relation a8 = g7~ a.

The order of AB is given by the identity in Proposition 2, namely:
Al - 1B
|ANDB|

Owing to the fact that A and B are cyclic groups of different order, they have trivial intersection.
Therefore |AB| = 2p. For that reason we are left to conclude that G = AB, i.e.

|AB| =

G=(a,fla®=e P =eafa ! =471,

Given that this is the exact group definition of a dihedral group, we can conclude that G = D,,.
By this method of exhaustion, we have shown that G is either isomorphic to a cyclic group or a
dihedral group.

O
Remark 8.
1. Groups of order 6 are isomorphic to Zg or D3 by Proposition 7.
2. Groups of order 10 are isomorphic to Zig or Ds by Proposition 7.
8. Groups of order 14 are isomorphic to Zi4 or D7 by Proposition 7.

Remark 9.
We classify all abelian groups of order p, p* or pq, where p and q are prime numbers, using the
Fundamental Theorem of Finite Abelian Groups. Moreover, by Remark 4 and Proposition 5 and
6 we are guaranteed that groups of order p, p*> and pq have no non-abelian groups.

~

Groups of order 2 are Zs.

Groups of order 3 are Zs.

Groups of order 4 are Z4 and Zo X Zs.
Groups of order 5 are Zs.

Groups of order 7 are Z.

Groups of order 9 are Zg and Zs3 X Z3.
Groups of order 11 are Zq1 .-

Groups of order 13 are Zq3.

© % NS T e e

Groups of order 15 are Zy5 = Z3 X Zs,.
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Proof of Theorem 1, Part 11

We continue the proof of Theorem 1 by proving the groups of order 8.

Proposition 10. There are five non-isomorphic groups of order 8. The abelians ones are Zg, Zo X
Ly, Ty X Ly X Zio. The non-abelian groups are the Dihedral group D4 and the Quaternion group Q5.

Proof.

(1)
(2)

If G is an abelian group of order 8, the fundamental theorem of Finite Abelian Groups (Theorem
3) implies that G isomorphic to either Zs, Zo X Zy4 or Zg X Zs X Zs. Therefore we may assume
for the rest of the proof that G is a non-abelian group of order 8.

First, we claim that G has an element of order 4. Indeed, the order of every element in G
divides 8, so it either 1, 2, 4, 8. Given that G is a non-abelian group, it contains no elements of
order 8. Moreover if every non-identity element had order 2, then for every a,b € G we’d have
ab = (ab)™! = b~ta~! = ba, so G would be abelian. It follows that there exists a non-identity
element of order different from 2, and the only such possible is 4.

Let « be an element of order 4 in G, and H be the cyclic group generated by x. Since H has
index 2 in G, then it’s a normal subgroup of G.

Let y € G\ H. Considering that H is normal, we have

yHy ' =H

and, in particular, yzy~! € H.

We now distinguish the following four cases.

1

Assume yzy~! = e. This forces yx = y, and so & = e, which is a contradiction. Hence yzy~! # e.

Assume yxy !

= x. Then yxr = xy.
This implies that any power of x and y commute, i.e. z™y" = y"a™.

Recall that the index of H is 2, so the group G can be expressed as the following union G =
HUyH. Then every element in G can be express in the form y™z™ for some n € Zs and m € Zy4.

Let a,b € G, then a = y™ 2™ and b = y"™22™2. Then multiplication of ab results in:

ab = ynlzmlyHQzWZ — ynl (yn2xm1)xm2 — (ynzyfh)(xmzxml) — (ynzme)(ynlzml) = ba

So we see that our assumption leads us to conclude that G is an abelian group which is a
contradiction. Therefore yzy ™! # x.

Assume yzy~! = x2. Given that the order of an element does not change under conjugation we

get that the order of yzy~lis equal to the order of z, i.e., |yzy~!| = |z| = 4. However |2?| = 2,
which proves that yzy~! # 22

Assume yzy ' =23 =271,

Then conjugation by y on x, results in

10



(a) Consider the case where |y| = 2. We wish to show that G is isomorphic to Dy, where:
Dy={(rs|rt=f>=e¢ fr=r"1f).
We are going to define the mapping ¢ : G — Dy as follows:
dle) = e, p(z) =1, ¢p(z*) =12, ¢(z°) =17
o(y) = f. dlyx) = fr, d(yz®) = fr*, ¢(ya®) = fr’

Given that G and D4 have the same order, ¢ is a bijection. As well, given any elements in
G, say a = y™ ™ and b = y™2x™2, it is clear that:

p(ab) = g(y™ x™y" ™)

Py y" e a™?)
— ¢(yn1+nzx—m1+m2)

— fn1+nz7,7m1+m2

= i framm
= T ey

= p(y" ™ )p(y"a™?)
= ¢(a)p(b)

This shows that ¢ is isomorphism. Therefore G = Dy.

(b) Consider the case where |y| = 4.

We recall that the Quaternion group, denoted by @2, consist of the elements {41, +i, +5, +k}
subject to the relation i2 = j2 = k> = —1,ij = —ji = k, jk = —kj =i, ki = —ik = j, see
that in particular the Quaternion group can be expressed more abstractly as:

Qo= (i,j|i*=1, i*=42=~1, jij ' =i"")

Given the relation i? = j2, we wish to prove that y> = z2. To this end consider that
G = HUyH, then y?> € HUyH. Since yH # H, then y>?H # yH, so our only option is
for y?H = H, which implies that y?> € H. See that the order of y? is two, then our only
option is for y2 = 2. Now define the mapping v : G — Q2 as follows:

’V(e) =1, ’7(1‘) =1, /7(‘@2) =-1, ’V(mg) =1
Yy) =4, Yyx)=ji=—k Aya®)=ji’=—j, yya’)=ji’=k

Similarly as before given that G and @) have the same order, and it is clear v is a bijection.
Moreover, in the same manner as discussed above for all ¢ and b in G we can show that
~v(ab) = v(a)vy(b). We have that 7 is an isomorphism, therefore G = Q5.

In conclusion, the only non abelian groups of order 8 are D, and Q-

11



5 Proof of Theorem 1, Part III

In this section we wish to demonstrate that there are only 5 possible group structures of order 12,
namely the abelian groups Z4 X Zsz and Zo X Zs X Zs3 and non-abelian groups Dg, A4, Q3.

Lemma 11. Any Group of order 12 has at least one normal subgroup.

Proof.
Let G be a group of order 12. The third Sylow theorem indicates that the possible number of
Sylow 3-subgroups is 1 and 4 and the possible number of Sylow 2-subgroups is 1 and 3. In such a
case where we have a unique Sylow p-subgroup be it 2 or 3, then it is guaranteed to be a normal
subgroup.

Moreover, if we assume that there can exist 3 Sylow 2-subgroups and 4 Sylow 3-subgroup,
then the size of the group must have 18 elements given difference in group structure, all these
subgroups would only intersect at the identity element. Hence there must at least exist one
unique Sylow p-subgroup which will a normal subgroup to G.

O

Note that this fact can also be seen when taking into account Figure 1 and Figure 2.

Figure 1: Consider the group of order 12 with ny = 3, which are the groups H;, Ho, H3 of order
4. We are left with two elements which means that we can only build a unique Sylow 3-subgroup
comprising the element {e, k1, k2 }.

Theorem 7. There are two abelian groups of order 12 namely Z4 X Zs and Zo X Zg X Z3.

Proof.

Let G be a group of order 12, such that ng = 1 and ny = 1, where n, represent the number
of Sylow p-subgroups. Then we have a unique Sylow 3-subgroup call it K and a unique Sylow
2-subgroup label it as H. Then K and H are normal subgroups of G.

Since the group structures of K and H are different it can only be the case that H N K = {e}.

12



Figure 2: Consider the Group of order 12 with nz = 4, which are the the groups K, Ko, K3, K4,
then we are left with the elements hi, ho, hg from which we can only build a unique Sylow-2 group
comprising the element {e, hy, ha, h3}

Moreover, consider the group HK and pick two element in this group, hi1ki and hoks, then if
h1k1 = hoks, we get that h;lhl = kgkfl, since HNK = {e}. We have that h; = hg and k1 = ks.
So, every hk € HK is distinct so the order of HK is 12. Owing to the fact that |G| = 12, we
have that G = H K. Hence, we can conclude by Proposition 2 that G = H x K, i.e., G = Z4 X Z3
OrGgZQXZQXZ?).

O

Theorem 8. If G is a non abelian group of order 12 and has a unique Sylow 2-subgroup, then G is
isomorphic to Ay.

Proof.

Let H be the unique Sylow 2-subgroup of GG. Since H has order 4 then H = Z, or H = Zy X Zs.
As discussed above H is a normal subgroup of G.

Moreover, owing to the fact that G is non abelian and has a unique Sylow 2-subgroup by the
Sylow Theorems this would imply that there exist 3 Sylow 3-subgroups. Owing to the fact that
G is a non-abelian group, there can not exists another Sylow 3-subgroup otherwise it would force
G to be abelian.

With that in mind, let © € G\ H, then z is a generator of a Sylow 3-subgroup which we denote
as K. Counsider the group HK, by (Theorem 1) the order of this group is:

HNK| 1
Therefore G =2 HK. So we are left to show exactly to what group is H isomorphic to. To

this end, recall that H is a unique Sylow 2-subgroup, so H < G. Thus, conjugation by x on the
subgroup H gives us:

K| =

xHx ' =H

13



This implies that for some y, 7, € H we have that zyz~! = y;.

First assume that H = Z,4, therefore H is generated by some element called it y. We have that
H = (y) = {e,y,y? y>}. We'll show that this leads to a contradiction

(1) Assume that y; = e, then:

Yy = zlr=e
which is a contradiction, since y is the generator of the subgroup H.

(2) Assume that y; =y, then:

This result contradicts our assumption that G is non-abelian. To see this consider any two
elements say hik; and hoks in HK.

It is clear that for some ny,ny € {0,1,2,3} and mq,mo € {0, 1,2} we can express:
hiky = y" ™

hoke = y"2a™?

Then we have:

hlk‘1h2k2 = yn1 Z‘mlyn2l‘m2
— ynl (y'rlg mml ):L,TTLQ
= (2" ) (")
= (y"a™)(y™a™)
= hokohik1

3) Assume that y; = y?, then:
( yi=y

This equality is a contradiction. The order of the element zyxr~! is 4 nonetheless the order of

y? is only 2. So this relation can not hold true.

(4) Assume that y; = y>.

xyafl = y3
Ty = y?’x

Now we check if this relation generates any contradictions, first consider (xy)?.

14



(zy)? = (zy)(zy) = (¥’z)(zy) = ¥’y

and
(zy)? = (zy)(zy) = (zy)(y’z) = 2

Lastly we check (xy)3:
(2y)* = (zy)(2y)* = (zy)(y°2%y) =y

However it is also the case that:
(zy)® = (zy)(zy)® = (2y)(2®) = (y’2)(2®) = ¢°

Therefore from our initial assumption zy = 33z, we can conclude that ¥y = ¢3, which is a
contradiction.

Given that we have exhausted all possible elements for which y; can be, our assumption that
H = 7,4 is not true.

By exclusion H = Zy X Zs, then H = {e, a, b, ab}, where a? = b? = (ab)? = e. We are left to find
what conjugation by z is valid:

(1) Assume that conjugation by z fixes all element in H. Then

1

rar ~ =a
zbr 1 =b
z(ab)z™ = ab

We have that
xa = ax, xb= bz, x(ab) = (ab)x

Note that the following is also true

r?a = ax?, ©%b = ba?, 2%(ab) = (ab)x?
Therefore every element of the group H commutes with every element in the group K.

Moreover if we consider the elements hiky, ho, ks € HK = G then hy,he € {e,a,b,ab} and
ki, ko € {e,x, 2%}

Owing to the fact that every element in H commutes with ever element in K:
(h1k1)(hoks) = hi(hoki)ka = (hohy)(kok1) = ho(kahi)k1 = (hoks)(h1k1)

This implies that the group G is abelian which is a contradiction, since we assumed that G is
non abelian. Therefore our assumption that composition by x fixes every element is erroneous.
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(2)

Assume that composition by x fixes only one element in H. With out lost of generality assume
that:

rax™' = b, xbr™t = a, z(ab)z™! = ab

Consider double conjugation by on the element b, this gives us:

2?bx™? = z(zbr Nz =zaz"! =b
Given that 22 = 2! and 272 = = we can write:
22z = 7 %x = b

which in turn gives us:
zbx™! = b

This is however a contradiction since we assumed that xbx~! = a. The same reasoning follows
if we decide to fix different element in H other than ab.

Therefore our assumption that composition by x fixes one element is false.
Last we are left to consider that composition by x permutes every element a, b, ab in H.

rar~' =b, xbx™! = ab (1)
To this end consider the Alternating Group of four elements.

Ay = {e, (12)(34), (13)(24), (14)(23), (123), (132), (134), (143), (124), (142), (234), (243)}

We define a mapping f : G — A4 as follows:

fla) = (12)(34)
f(0) = (14)(23
flz) = (123)

We claim that this is a isomorphism from G to Ajy.

The following elements {e, (12)(34), (13)(24), (14)(23)} from A4 form the klein-four group, the
which is easily seen from the table below. This subgroup we will denote as H.

| e (12)(34) (13)(24) (14)(23)
e e (12)(34) (13)(24) (14)(23)
(12)(34) | (12)(34) e (14)(23) (13)(24)
(13)(24) | (13)(24) (14)(23) e (12)(34)
(14)(23) | (14)(23) (13)(24) (12)(34) e

Similarly the multiplication table of the subgroup H of G is:

‘eabab

e e a b ab
a a e ab b
b b ab e

abl ab b a e

16



It is clear that f defines a isomorphism between the group H and H.

Moreover, if we let K = ((123)), then clearly by it’s multiplication table below, it constitutes a
subgroup of Ay.

| e (123) (132)
e e (123) (132)
(123)| (123) (132) e
(132) | (132) e (123)

If we compare this multiplication table of K:
‘ e x 2

e e x

x x z? e

22| 2?2 e @

It is clear that f is an isomorphism between K and K.

Now, if we consider the group HK, owing to the fact that each element in H has order 2 and
K has order 3, except for the identity, their intersection can only be the identity. Therefore the
size this group is

This directly implies that HK = A,4.

Since it is the case that H = H and K = K, to be able to state that the function f is an
isomorphism between HK and HK we need our function to have the following conditions:

f@)f(a)f(z™h) = f(b), f(x)f(b)f(z72) = f(ab)
By simple calculation we get
f@)f(a)f(a™) = (123)(12)(34)(132) = (14)(23) = f(b)
fla) f0) f(x™") = (123)(14)(23)(132) = (13)(24) = (12)(34)(14)(23) = f(ab)

Therefore if we consider the multiplication table for HK and HK, the function f is an isomor-
phism.
Therefore, If G is a non abelian group of order 12 and has a unique Sylow 2-subgroup. Then G
is isomorphic to Ajy.

O

Theorem 9. If G is a non-abelian group of order 12 and has a unique Sylow 3-subgroup. Then G
is isomorphic to either Dg or Q3.

Proof.

Let K be the unique Sylow 3-subgroup of G. Then K = (z) and is normal subgroup of G. As
stated before if there is a unique Sylow 3-subgroup then there exists 3 Sylow 2-subgroups of G,
as shown in Figure 1.
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By the Second Sylow Theorem, Theorem 5, we know that all Sylow 2-subgroups are conjugate
to each other. Therefore, all 3 subgroups must have the same group structure. Given that these
Sylow 2-subgroups contain only four elements, these 3 Sylow 2-subgroups are either isomorphic
to Z4 or ZQ X ZQ.

Case I. Consider the case where all Sylow 2-subgroups are isomorphic to Z4. Let H be a Sylow
2-subgroup, then it is generated by some element call it y € G.

Now if we consider the group K H, given that H and K have different group structure then these
two groups only intersect at the identity. So the order of the group HK is:

|| |H| _3-4

— = — =12,

|K N H|

Thus G = KH. Lastly we are left to understand the underlying group operation between

elements of H and K. To such an end, note that K is a normal group of G, hence conjugation
y € H does not alter the group, i.e.,

|[KH| =

yKy ' =K

So, yry~! € K where K = (). We are left to check to what element in K does yzy~! yield a
valid relationship.

To such an end:

1

1. Consider the case were yxy~! = e. Then z = y~'y = e, which is a contradiction. Therefore

an invalid relation.

2. Consider the case were yxy~! = z. Then 2y = yz, or more generally for any power z"y™ =
y™x™. Then given any two element in K H of the form y™* 2™ and y™2z™2 where ny,no € Zy
and mq,mo € Z3. Then we can show that these two elements commute as show below:

ynlxml yngxmg — y’ﬂl (y’l’Lz xml )xmz — (yng ynl )(xmg l,ml ) — y’ﬂz xMQ y’ﬂl xml .

Therefore, this relation would imply that G is in fact abelian. This however contradicts our
initial assumption that G is non-abelian.

3. Consider the case were yxy~! = 2.

To this end note the Dicylic group of order 12, Q3:
Qs ={a,b|a®=1,a> =0 bab 'a = e}
and the elements in the group KH:
KH = {e,z,2% y,9%.y°, vy, xy”, vy’ 2%y, 2°y%, 2%y°}

Given the relation yxy~! = 22 of which can be also written as yx = 2%y, we wish show that

Q)3 is isomorphic to K H. First we can calculate the order of elements in K H, for example the
element zy?2.

To start consider (xy?)?%:

(zy?)(zy?) = (zy)(y2)(v*) = (2y)(2*y) (y°) = z(yz)(zy°)



Given that the order of #? is 3, we can conclude that then the order xy? is 6.

Moreover, it’s clear that the order of y? is 2. As well y? is the same as (zy?)3, as shown below:
(2y?)® = (2y°)*(2y?) = 2*(2y®) = ¢
Now define the function f to be the mapping from KH to Q3 as:

fay®) =a
fly) =1

It’s clear that every element from K H is mapped to @3, and given that
bab ta =e

and
(W) (@y?) (v ") (@y?) = yayry® = ya(yz)y® = yz(2’y)y® = e

we know that the group operation in K H is the same as the group operation in Q3. Given that
f maps generators and preserves the group structure, we can conclude that K H is isomorphic
to Q3. More explicitly, we can stated that G = 3 when G has a unique Sylow 3-subgroup
and every Sylow 2-subgroups are cyclic.

Case II. For the last case we wish to show that if all Sylow 2-subgroups are isomorphic to
Zo X Zs then G will be isomorphic to Dg. Let H be a Sylow 2-subgroup, then every element
except for the identity has order 2. We write:

H ={e,a,b,ab}
Note that G = K H, given that |[KH| = 12. Given that K is a normal subgroup of G, consider
conjugation by some element in H. As follows we have that:
ara"t =z
bab™! = 2V

(ab)z(ab)™! =z
such that u,v € {0,1,—1}.

At first it is clear that if u or v or both are equal to 0. Then we are lead to conclude that
x = e, which is a contradiction as z is the generator for K.

Moreover, if we consider the case where u,v equal 1. Then we are lead to conclude that every
element commutes:

ar = xa
br = xb
abz = zab

which as shown before this leads us to conclude that our group is abelian, which we assumed
it was not. Hence u and v can not equal 1 given that it leads to a contradiction.
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Lastly, we can choose u, v to be either 1 and -1 or -1 and 1 respectively. Note that both choices
are equivalent to letting u, v be equal to -1 and -1. So with out lost of generality we will choose
u to equal to 1 and v to equal -1. This result in:

ara = x
beb =2t

(ab)x(ab) = z~*

Now we wish to show that there exist an isomorphism between G and the Dg. To this end,
consider the order of the element (ax):

(az)(az) = (aza)r =z - x = 2°.

Given that the order of z2 is 3, we can conclude that the order of ax is 6.

Moreover note that [b| = 2. Hence if we consider the function f to map from KH to Dg:

fl(az)™b™) = r™ f™, where n, m are integers.
See that all elements from K H are mapped to Dg, therefore the map is a bijection.

Finally, if we consider group structure of the dihedral group of order 6, then we require the
relationship between r and f to hold:

Do={rf|1°=f2=enf=r'f)
To this end consider that:
(ax®)b = a(z™'b) = a(bx) = b(ax)

Hence:
f((az®)b) = fax®) - f(b) =7 f=f-r~" = f(b)- f(ax) = f(bax)

Since (ax)~! = (az?), it is evident that the group operation K H is the same as the group

operation in Dg. Furthermore we can show that f is a homomorphism which allowing us to
conclude that f is an isomorphism. Therefore, G = Dg.

O

This concludes our classification of all groups up to order 15.

6 Proof of Theorem 2, Part I

In the previous section we sought to classify all groups of order 15 or less. For some of these groups
we find the Symmetric Group of least order in which it can be embedded; we shall refer to this as
the minimal embedding.
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6.1 Cyclic Groups

Lemma 12. Let p be a prime number and v > 1 an integer. The minimal embedding of a cyclic
group G = Zyr is Spr.

Proof.
In any symmetric group S,,, the order of an element 7 € 5, is given by the least common multiple

of the length of the cycles in its cycle decomposition. In other words, if we decompose 7 into
disjoint cycles:
T =01"09:03" 04" 0k

then the order ord(m) in S, is the lem(ly,ls, ..., lx), where I; is the length of o; for 1 <i < k.
Moreover, given that all possible cycle types of S,, are given by partitions of n. It is clear that

i+l +l3+--+l<n (3)
Now suppose that one could embed G = Z,,- into a symmetric group S, with n < p”. Then 5,
would necessarily contain an element, 7, of order p”. By the above discussion:
pT = lcm(ll, lz, e ,lk)
for some positive integer 1,15, ..., lk.

In particular, each [; must divide p". Given that p is a prime, each [; is restricted to be a power
of p no greater than p”. So we may re-write the equation above to:

lcm(l17 l2a l37 .. 7lk) = lcm(p717p727p737 ey = pMaX{FYI”mw"’Yk} = pr

")
where ~; is some integer less than or equal to r for 1 <1 < k.

Hence, there exists some index ¢ such that v; = r for 1 < ¢ < k. Therefore, the cycle length, [;,
for that same index 4, would be p".

However, as we noted in Equation 3 we have that:

Lh+l+-+L.<n<p"
which contradicts our previous argument that there exists some cycle whose length is p™. It
follows that if G = Z,- is embedded in some S,, then n > p".

Finally, we note that such an embedding is possible for n = p".

Consider, the permutation (1 2 3... p”) of p" elements generates a cyclic subgroup of Sy
whose order is p”. Given that two cyclic groups of the same order are isomorphic, then G =
((123...p") < Spr. So we conclude that Sy is the minimal embedding of G.

O

As a consequence we obtain the following table:
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H Group Minimal Embedding H Group Minimal Embedding H

Ly So Zsg Sg
73 S3 Zg Sg
Ly Sy 711 S11
Zs S5 Z13 S13
L Sy

Next we wish to prove the minimal group embedding for Zg and Z,o. To achieve this goal we will
use again the idea from the previous lemma combined with the fact that possible cycle types of S,
are given by partitions of n.

Lemma 13.
1. The minimal embedding of Zg is Ss.
The minimal embedding of Z1¢ is S7.

The minimal embedding of Z15 is S7.

e e

The minimal embedding of Z14 is Sy.
5. The minimal embedding of Z15 is Ss.

Proof.

To start we wish to prove that S5 is the minimal Symmetric Group in which Zg can be embedded
in. See that Zg can be expressed in cyclic notation as Zg = ((123)(45)) < Ss.

Furthermore, assume by way of contradiction that Zg < Sy, then this would imply that there
exist a permutation in Sy in which the least common multiple of the cycle lengths is 6. This
entails that there exists a cycle in the permutation which is a multiple of 3. See that there is
only a multiple of 3 less than 4, namely 3 it’s self. So we will have an permutation with a cycle
type that involves a 3-cycle.

As stated before all possible cycle types of S,, are given by partitions of n. In particular the only
partition of 4 that involves a 3 is 3+1 = 4. However, in this case the least common multiple of
the cycle lengths is just lem(3,1) = 3. Hence there can not exist a permutation in Sy of order 6,
so we have reach a contradiction. Therefore the minimal embedding of Zg is S5.

The exact same proof method applies to Zio and Zq4.

Similarly, we can conclude that the minimal Symmetric Group in which Z15 can be embedded
in is S7. Notice that Z15 can be expressed in cyclic notation as Z1o = ((1234)(567)) < Sy.

If we assume by way of contradiction that Z,5 < Sg, then there exist a permutation in which the
least common multiple of the cycles lengths is 12. This would imply by the same reasoning as
before that there exist a cycle in the permutation which is a multiple of 4. There is only a multi-
ple of 4 less than 6, exactly 4 it’s self. So we are forced to have a cycle type that contains a 4-cycle.

Moreover, there are only two partition of 6 that contains a 4 which are 44+1+1 = 6 and 442 = 6.
However, the least common multiple of these cycle lengths is just lem(4,1,1) = lem(4,2) = 4.
Hence there can not exist a permutation in Sg which is of order 12, therefore S7 is the minimal
Symmetric Group in which Z15 can be embedded in.
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The same proof technique applies to Zqs.

6.2 Dihedral Groups

Furthermore, consider the minimal group embedding of any dihedral group D,, of order 2n, where
n is some positive integer greater than 2. Given that we are considering groups of order at most 15
we restrict ourself to the following lemma:

Lemma 14.

1. The minimal embedding of D3 is Ss.

2. The minimal embedding of Dy is Sy.

3. The minimal embedding of Ds is Ss.

4. The minimal embedding of D7 is S7.
Proof. Tt is well known that D3 is isomorphic to S3. Hence S3 is it’s minimal embedding.

On the other hand, see that the group representation of Dy = (r, f | r* =e¢, f2 =e,rf = fr=1).
We wish to prove that Dy — Sy by proving that Dy = ((1234),(12)(34)). To start see that

(r) = ((1234)) given that both are cyclic groups of the same order, furthermore, if we establish the
mapping v : Dy — ((1234), (12)(34)) to be:

V(™) = (1234)"  4(f) = (12)(34)  ~(rf) = (1234)(12)(34)

where m is an integer, we obtain the following relations

Y(r)y(f) = (1234)(12)(34) = ~(rf)
and
Y(r)y(f) = (1234)(12)(34) = (12)(34)(1432) = (12)(34)(1234) " = () (r™")
See that every element in Dy is mapped to a unique element in ((1234), (12)(34)). Therefore v is a
bijective homomorphism. So we can conclude that Dy < Sy given that

Dy = ((1234), (12)(34)) < Si.

Lastly, Dy ¥+ S3 given that the order of | D4| = 8 does not divide the order of |S3| = 6. Thus, Sy is
the minimal embedding of D4. The same reasoning can be applied to prove the minimal embedding
of D5 and D7 with the exception that v(f) = (25)(34) and v(f) = (27)(36)(45) respectively. It
should be noted that if p is prime and n < p then S, has no elements of order p. O

Lemma 15. The minimal embedding of Dg is Ss.

Proof.
Consider the group representation of Dg = (r, f | r® = e, f?> = e,rf = fr~!). Notice that
(r) = ((123)(45)) given that both are cyclic groups which share the same order. Now consider
the mapping v : Dg — ((123)(45), (12)) to be:

(™) = (123)"(45)™  y(f) = (12)  ~y(rf) = (123)(45)(12) = (13)(45)
where m is any integer. We have the following relations:

Y(r)v(f) = (123)(45)(12) = (13)(45) = y(r f)
and
V() (f) = (123)(45)(12) = (13)(45) = (12)(132)(45) = (/)7 (r ")
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Given that every element in Dg is mapped to a unique element in ((123)(45), (12)). We can
conclude that v is a bijective homomorphism. So we can conclude that Dg — S5 given that

Ds = ((123),(12), (45)) < S5

Lastly see, that Dg can not be embedded in S4;. This owes to the fact that Dg has a cyclic
subgroup of order 6, where as S; has no elements of order 6.

O

6.3 Non Cyclic Abelian Groups
Next consider the following non-cycic abelian groups
Lo X Lo, Lo X Ly, Zg X Lo X Lo, Z3 X Ls3,Lo X Lo X L3
Lemma 16.
1. The minimal embedding of Zo X Zo is Sy.
2. The minimal embedding of Zo X Z4 is Sg.
3. The minimal embedding of Zs X Z3 is Sg.

Proof. To begin consider the group Zs X Zs. See that Zs X Zs can not be embedded in S3 given that
the order of Zs x Zy does not divide the order of S3. So it’s minimal embedding is S4 by Cayley’s
theorem.

Now consider the following abelian groups, Zs X Zo X Zo and Zs X Z,. We wish to show that
their minimal embedding is Sg. First, see that both groups can be embedded in Sg, owing to the
fact that they are isomorphic to the cyclic representations shown below:

ZQXZQXZ2§<(12), (34), (56)>SS§ and ZQXZ42<(12), (3456)>§SG

Nonetheless, see that these two groups can not be embedded in Sy nor in S5, owing to the fact
that if such an embedding were possible they both would be Sylow 2-subgroups conjugate to Dy,
by the Sylow Theorems. This owes to the fact that D, being of order 8 is a Sylow 2-subgroup of Sy
and Ss. Therefore we obtain a contradiction because D, is a non-abelian group. Therefore, Sg is
the minimal embedding for Zy X Zo X Zo and Zg X Z4.

Continuing with minimal embeddings, consider the group Zs x Zs, which has as it’s minimum
embedding Sg. This owes to fact Z3 x Zg is isomorphic to the cyclic representation:

ZsxZs=((123), (456)) < Sq

and that the order of Z3 x Z3 being 9, does not divide the order of S4 or Ss which is 24 and 120
respectively.

O

Remark 17. By similar methods used in Lemma 16 it can be proven that Zo X Zo X Z3 has as it’s
minimal embedding S7 as stated in [1].
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7 The Alternating Group and Dicyclic groups

Finally we consider the Alternating group and the Di-cyclic groups.
Lemma 18. The minimal embedding of Ay is Sy.

Proof. See that Ay < S; and |A4| [ |S3|. Therefore A4 has as it minimal embedding Sj.
O

Now we wish to prove that the minimal embedding of Q)2 is Ss. To this end consider the group G
acting on a set S. Then
geG, zesS . g-xzes

For a fixed g € G, define

A-g: S = S
T gex

Then A - g is a permutation of S.

Now define a map:

F:G — Perm(S)
g — Ay

It’s known that F' is a group homomorphism.
Moreover Ker(F) ={g € G : gx = x,Vo € S} = (g Stab(x).

Now consider the following Lemma.
Lemma 19. The Quaternion Group Qo does not embed in S, with n < 8.

Proof.
Suppose otherwise, then there exists an injective group homomorphism F : Q2 — Perm(S),
with |S| < 8. Injective means trivial kernel, so [, g Stab(z) = {e}.
Now, by the Orbit-Stabilizer theorem:

zeS

|Orbit(x)] = [Q2 : Stab(z)]
Thus

Q2|

|Stab(z)|
which contradicts that [Stab(x)| > 1, i.e., the Stabilizer subgroup is non-trivial for every x € S.

= |Orbit(x)] < |s| < 8 =|Q2],

One specific feature of @3 is that every non-trivial subgroup contains the subgroup {£1}. In
other words, the intersection of the stabilizer contains at least 2 elements. This contradicts our
assumption that we have a trivial kernel.

O

Lemma 20. The minimal embedding of Q2 is Ss.
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Proof. Lastly we are left to show that Q2 < Sg. Consider the group representation of ()2, which is
Q2 = (i,ji" = ;8% = j% 57 ij =i7")
Let ~ be the function that maps Q2 to a subgroup of Sg given by:
~(E™) = (1234)™(5678)™,(5™) = (1638)™(2547)"

(i) = (1234)(5678)(1638)(2547) = (1735)(2648)

where m and n are any integer. Observe that 7 is a bijection, as shown below every element from
()2 is mapped to a distinct permutation in Ss.

v(i) = (1234)(5678)
7(i)? = (1234)*(5678)2 = (13)(24)(57)(68) = 7(~1)
v(1)® = (1234)*(5678)% = (1432)(5876) = (i)
v(i)* = (1234)*(5678)* = e = (1)

v(j) = (1638)(2547)
() = (1638)*(2547)* = (13)(24)(57)(68) = (1)
Y(j)* = (1638)*(2547)° = (1836)(2745) = (—j)
~()* = (1638)*(2547)* = e = 4(1)

(ig) = (1735)(2648) = ~(k)
~(i7)% = (1735)%(2648)* = (13)(24)(57)(68) = »(~1)
v(i5)® = (1735)3(2648)% = (1537)(2846) = v(—k)
(if)" = (1735)1(2648)" = e = (1)
Moreover, see that the first two group relations hold, namely, v(i)* = e and ~(5)? = v(i)2.
We have that ~ is homomorphism given that:
Y(ig) = (1234)(5678)(1638)(2547) = ~(i)v(j)
Lastly we have that:
V() (D)7 = 7(5)7(2)° = (1638)(2547)(1432)(5876) = (1735)(2648) = 7(i)7(j)

So, we obtain:
(@) @)y () = ()7

Given that v is a bijective homomorphism, we can conclude that:
Q2 = ((1234)(5678), (1638)(2547)) < Sg

Therefore ()2 has as it’s minimal embedding Sg.

Lemma 21. The minimal embedding of Qs is S7.
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Proof. Consider the group representation for Qs:

1

Q3:<m,y|m4:y3:e, Tys” :y_1>

We have an element of order 4, and another element of order 3. Now, every element of order 3
in Sg is either a 3-cycle or the product of two distinct 3-cycles. In othe words if 7 has order 3 in
Se, then 7 is of the form (123) or (123)(456).

Case 1. 7 = (123)
A well known fact from Group Theory states that if o is any element of Sg then:

(@)(T)(0) ™" = (e(Da(2)a(3))

Given that we want to have the same group structure we require that zyz~' holds true. Thus,
(@)(T)(0) "t =771 = (132)

However, this implies that either o(1) =1, or ¢(2) = 2, or ¢(3) = 3. Without lost of generality,
assume that o(1) = 1. Then ¢(2) = 3 and ¢(3) = 2, i.e., o swaps 2 and 3. However, this makes
it impossible for ¢ to contain a 4-cycle, therefore ¢ cannot have order 4.

Case 2. 7 = (123)(456)
This case follows the same proof pattern as Case 1, the only difference is that: (o)(7)(0)~! =

(0(1)a(2)a(3))(o(4)a(5)a(6)).
So we can conclude that @3 can not be embedded in Sg.

Finally, by the same methods used to find an isomorphism from (s to a subgroup in Sg, we can
prove that there exist subgroup in S7 isomorphic to Qs as stated in [1]. Specifically, it can shown
that:

Qs = ((123), (12)(4567)) < .

Therefore, @3 has as it’s minimal embedding S7.
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